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1. CurveNet Architecture Details
Local Point-Feature Aggregation (LPFA). Local fea-
ture aggregation is a basic feature propagation operator in
our CurveNet. As suggested by LocSE block [4], we first
encode the relative point coordinates as [p,pk,pk − p],
where pk is one of the KNN neighbors of p. We then lin-
early transform the relative encodings to adapt the point fea-
tures. Building upon [4], we adopt an extra MLP to better
propagate the element-wise integrated features. An average
pooling layer is placed at the end of the block to summarize
local descriptors for each neighborhood efficiently.

We employ a simplified LPFA block at the start of our
CurveNet to learn an initial point-wise local spatial encod-
ings. Such design provides subsequent network with better
local descriptions than the raw coordinates.

Curve Intervention Convolution (CIC). We embed the
proposed Curve Grouping operator (CG) and Curve Aggre-
gation operator (CA) in the CIC block to enable a better
point cloud feature propagation. Our CIC block follows a
bottleneck design that uses a MLP at the start of the block
to project the incoming features into a lower dimension for
computational efficiency. We then apply the KNN algo-
rithm to fetch and group the local neighbors based on their
euclidean distance. As discussed in main paper Sec 3.1,
long-ranged dependency features need to be fused to the
same local neighbors, hence the key point of the CIC block
design lies at using the KNN grouped index for both local
aggregation and curve aggregation. To this end, we choose
to apply KNN on point coordinates rather than point fea-
tures. After computing the KNN index, we use the top-k
selection method [2] to get the starting point set which is
later used in the subsequent CG module for curve group-
ing. Curve feature aggregation is followed by a LPFA block
that learns further local features on the same KNN indexed
neighbors. At the end of a CIC block, we reproject the
low dimension features back to a high dimensional space
through a paired MLP.

We adopt Farthest Point Sampling (FPS) at the very start

Table 1. Network complexity and effectiveness.

Methods #Params FLOPs M40 Acc
PointNet [10] 3.47 M 0.45 G 89.2%
PointNet++ [11] 1.48 M 1.68 G 90.7%
DGCNN [13] 1.81 M 2.43 G 92.9%
RS-CNN [7] 1.41 M 0.30 G 92.9%
PCT [3] 2.88 M 2.17 G 93.2%
CurveNet (Ours) 2.14 M 0.66 G 93.8%

of the CIC block when a downsampling of the point cloud
is required. Instead of a direct use of the FPS indices for
points sifting, we apply ball query on the FPS indices [8] to
find the most representative points with maximum feature
values within each ball.

Task-Specified Head (TSH). The final predictions of our
CurveNet are obtained through different heads regarding of
multiple tasks. For classification tasks, we first use a point-
wise MLP to project the incoming features to a higher di-
mension. We then concatenate the max pooled and average
pooled tensors and pass them into two fully-connected lay-
ers with a dropout layer to derive the classification scores.

For segmentation and normal estimation tasks, we fol-
low the attention U-Net [9] design that encoded features are
skipped to the upsampling layer [10] at each level. Addi-
tional MLPs and a dropout layer are used at the end of the
last upsampling layer to give the point-wise predictions.

CurveNet Structure. For all object analysis tasks, we
place a simplified LPFA block at the start of our CurveNet
for better relative local spatial encodings. We stack four
building groups each with two CIC blocks as the feature
extractor backbone for classification tasks (Table 2). Ad-
ditional CIC blocks are used in the task-specified head in
segmentation and normal estimation tasks, as presented in
Table 3 and Table 4, respectively.



Table 2. CurveNet structure details for the classification tasks.
Block #in #out #points w/ curves
LPFA 3 32 1024
CIC 32 64 1024 X
CIC 64 64 1024 X
CIC 64 128 512 X
CIC 128 128 512 X
CIC 128 256 256
CIC 256 256 256
CIC 256 512 64
CIC 512 512 64
TSH 512 #class -

Table 3. CurveNet structure details for the segmentation task.

Block #in #out #points w/ curves
LPFA 3 32 2048
CIC 32 64 2048 X
CIC 64 64 2048 X
CIC 64 128 512 X
CIC 128 128 512 X
CIC 128 256 128
CIC 256 256 128
CIC 256 512 32
CIC 512 512 32
CIC 512 1024 8
CIC 1024 1024 8
TSH 1024 #class 2048

Table 4. CurveNet structure details for the normal estimation task.
Block #in #out #points w/ curves
LPFA 3 64 1024
CIC 64 256 1024 X
CIC 256 256 1024 X
CIC 256 512 256 X
CIC 512 512 256 X
CIC 512 1024 64
CIC 1024 1024 64
CIC 1024 2048 16
CIC 2048 2048 16
TSH 2048 3 1024

2. Additional Ablation Studies

Complexity analysis. Computational complexity is es-
sential to point cloud analysis. Here we report the net-
work complexity of our CurveNet and competing methods
collected from other literatures in Table 1. Compared to
the most recent state-of-the-art method [3], our CurveNet
achieves superior ModelNet40 classification accuracy with

Table 5. Extensive ablation studies.
Methods Acc (%) latency (ms)
CurveNet w/o curves 93.3 37.5 (150)
CurveNet w/ random walk 93.0 42.0 (155)
CurveNet w/ point-wise non-local only 93.1 40.3 (158)
CurveNet w/ learnable tolerance θ̄ 93.3 48.3 (158)
CurveNet w/ curves 93.8 45.2 (146)

significantly lower parameter amounts and FLOPs.

Impact of network depth. In our ResNet style CurveNet,
the overall network performance might be impacted by the
number of building blocks. Here we report ModelNet40
results on CurveNet with different CIC blocks used (Figure
6). With only 2 levels and 4 CIC blocks, CurveNet still
outperforms the DGCNN baseline [13] and with only 1/4.5
FLOPs.

Table 6. ModelNet40 results on # CIC blocks.
#blocks 8 6 4 2 [13]

Acc. (%) 93.8 93.3 93.0 92.7 92.9
FLOPs (G) 0.66 0.56 0.54 0.23 2.43

Shallow layer vs deep layer. The results of aggregat-
ing curves with various quantities and lengths on different
groups of our CurveNet are shown in Figure 1. Aggregat-
ing curves at shallow layers (group 1/2) yield better results
than at deep layers (group 3/4). By aggregating 100 curves
with length 5 at both building group 1 and 2, our CurveNet
reaches 93.84% classification accuracy on the ModelNet40
benchmark.

Curve quantity vs curve length. Figure 1 bottom right
shows the results on fixed total point number in curves. We
found as expected that the curves of relatively longer length
could capture more geometric traits to achieve greater re-
sults, however, they are also empirically found more likely
to be trapped at local regions in some cases (Figure 3).

Guided walk vs random walk. As discussed in main pa-
per Sec. 3.2, guided walk with a deterministic π can be
easily trapped at local positions. However, random walk
with a stochastic π will merely be constrained and is able
to explore wide range relations without extra computations.
To validate the effectiveness of such stochastic policy, we
simply modify our method by determining the next tran-
sition state randomly at each moment, instead of the state
with the highest score. We report the result with random
walk in Table 5. Although using stochastic π infers slightly
faster, we reckon that the object shapes cannot be described
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Figure 1. Applying curve aggregation at different groups. The
y-axis stands for the classification accuracy (%), x-axis stands for
the curve length, black dotted line stands for CurveNet w/o curves.
Note that downsampling is enabled at group 3&4, and we adjust
the curve parameters accordingly.

with randomly formed curves and hence leads to an obvious
performance drop.

Curve aggregation vs point-wise non-local. Similar to
the proposed curve aggregation operator, non-local aggre-
gation [12] also integrates long-range (global) information
to the current local feature space. However, the all-to-
all mapping does not consider continuous segments of ob-
ject shapes and hence, cannot cooperate with our CurveNet
well. The ablation result of replacing the proposed CG&CA
in our CurveNet with the point-wise feature non-local mod-
ule is presented in Table 5. In our experiment, point-wise
non-local aggregation results in poorer classification accu-
racy and even longer network inference latency.

3. Additional Results

3.1. Visualization of Starting Points

The starting points of curves are learned through simple
self-attention modules in CurveNet which tends to pick the
most suitable points to generate meaningful features. We
visualize the inferred starting points of three objects in Fig-
ure 2. We observed that the starting points are all located at
high curvature locations, however, more advanced selection
methods could be used to choose better starting points and
eventually for better overall results.

Figure 2. Starting points (red) in three M40 point clouds (gray).

3.2. Additional Results on ModelNet40

We visualize more grouped curves on ModelNet40 vali-
dation objects in Figure 3. As aforementioned in main pa-
per Sec 4.3, we observed that long curves may lack ade-
quate guidance and are more easily to be trapped at local
regions than the short ones (red arrows in Figure 3). We
attribute such glitch on long curves to the usage of a sim-
ple MLP (Eq. 3, main paper) in φ(·). We believe that
with a better learning protocol (e.g. more advanced mes-
sage passing layer instead of a simple MLP) and a better
starting point proposal strategy (instead of the simple Top-
K selection [2]), the long curves might get better guidances
and more scattered starting points to explore longer range
information more effectively.

3.3. Additional Results on ShapeNetPart

The category-wise mIoU scores are presented in Table
7, and more qualitative segmentation results along with
the grouped curves are shown in Figure 4. Our CurveNet
achieves state-of-the-art results in terms of the overall per-
formances and 9 specific objects.



ba
th
tu
b

be
d

be
nc
h

bo
ttl
e

la
m
p

pe
rs
on

pi
an
o

pl
an
t

st
ai
rs

to
ile
t

Figure 3. Curves on the ModelNet40 validation dataset. Left shows 5 randomly picked long-curve (l = 30) cases on three different
instances in 10 classes. Right shows 50 randomly picked short-curve (l = 5) cases on the same objects. Red arrows point to the area where
long curves are trapped in local regions. Curves are plotted in random colors. Better zoomed in for details.
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Figure 4. Curves and segmentation results on the ShapeNetPart validation dataset. We show 50 randomly picked curves (l = 5), our
CurveNet predictions, and ground truth references on two instances of each of the 5 classes. Curves are plotted in random colors. Better
zoomed in for details.

Table 7. ShapeNetPart validation results in mean intersection of union (%). ‘*’ denotes methods evaluated with voting strategy [7].

Methods mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
plane phone bike board

PointNet [10] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
DGCNN [13] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
PointCNN [6] * 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
RS-CNN [7] * 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
LocAL-Net [1] * 86.2 84.1 88.8 86.7 78.8 91.2 83.3 91.9 88.6 84.9 95.7 72.5 94.8 83.6 60.0 77.1 84.0
PCT [3] * 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7
PointNet++ [11] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SO-Net [5] 84.6 81.9 83.5 84.8 781 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6
CurveNet (ours) 86.6 85.2 86.1 89.8 80.9 92.0 73.4 91.9 88.0 84.8 96.0 74.3 95.2 82.2 59.8 76.6 83.8
CurveNet (ours) * 86.8 85.1 84.1 89.4 80.8 91.9 75.2 91.8 88.7 86.3 96.3 72.8 95.4 82.7 59.8 78.5 84.1



References

[1] Qendrim Bytyqi, Nicola Wolpert, and Elmar Schömer.
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